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Abstract

A solution of a non-homogeneous orthotropic elastic cylindrical shell for axisymmetric plane strain
dynamic thermoelastic problems is developed. Firstly, a new dependent variable is introduced to rewrite the
governing equation, the boundary conditions as well as the initial conditions. Secondly, a special function is
introduced to transform the inhomogeneous boundary conditions to the homogeneous ones. Then by virtue
of the orthogonal expansion technique, the equation with respect to the time variable is derived, of which
the solution can be obtained. The displacement solution is finally presented, which can degenerate in a
rather straightforward way to the solution for a homogeneous orthotropic cylindrical shell and isotropic
solid cylinder as well as that for a non-homogeneous isotropic cylindrical shell. Using the present method,
integral transform can be avoided. It is fit for a cylindrical shell with arbitrary thickness subjected to
arbitrary thermal loads. It is also very convenient to deal with dynamic thermoelastic problems for different
boundary conditions. Besides, the numerical calculation involved is very easy to be performed. Several
examples are presented.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cylindrical shell structure is a common structure type that can be used in applications involving
aerospace, submarine structures, nuclear reactors as well as chemical pipes. When the structures
are exposed to a temperature field, the thermal stresses are then induced. The research for
thermoelastic problems, especially for dynamic thermoelastic problems, is of increasing interest in
engineering science and many works have been done. For quasi-static thermoelastic problem,
Parida and Das [1] studied the transient thermal stresses in a homogeneous orthotropic thin
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circular disc due to an instantaneous point heat source. Sugano [2] solved the transient thermal
stresses in a homogeneous transversely isotropic, finite cylinder due to an arbitrary internal heat
generation. Kardomateas [3,4] obtained the transient thermal stresses in a homogeneous
cylindrically orthotropic hollow cylinder, due to a constant temperature imposed on one surface
and heat convection into a medium at the other surface. For dynamic thermoelastic problem, Ho
[5] obtained the dynamic thermal stress response in a uniformly heated, homogeneous isotropic,
infinite cylindrical rod. Wang [6,7] studied the dynamic thermal stresses in thermally shocked,
homogeneous isotropic solid cylinders and cylindrical shells. Abd-Alla [8] solved the thermal
stresses in a homogeneous, transversely isotropic, infinite cylindrical shell subjected to an
instantaneous heat source. Cho et al. [9] obtained the thermal stresses in a thermally shocked,
homogeneous orthotropic cylindrical shell.

In recent years, many new type materials have been used in engineering and there are a lot of
works have been done for non-homogeneous materials. Among them, the special case that
Young’s modulus has a power-law dependence on the radial co-ordinate, while the linear thermal
expansion coefficient and the Poisson ratio are constant, have been considered by many scientists
and engineers. For instance, Shaffer [10] has obtained the general solutions for a non-
homogeneous orthotropic annular disk in-plane stress subjected to uniform pressures at the
internal and external surfaces. Horgan and Chan [11,12] investigated the pressured FGM hollow
cylinder and disk problems and the stress response of FGM isotropic linear elastic rotating disks
recently. The rotation problem of a non-homogeneous orthotropic composite cylinder was
considered by El-Naggar et al. [13]. Abd-Alla et al. [14,15] studied the transient thermal stresses in
a rotating non-homogeneous cylindrically orthotropic composite tube and in a non-homogeneous
spherically orthotropic elastic medium with spherical cavity, respectively. Tarn [16] obtained the
exact solutions of functionally graded anisotropic cylinders subjected to thermal and mechanical
loads for steady-state problem. Sarma [17] investigated the torsional oscillations of a finite non-
homogeneous piezoelectric cylindrical shell, in which the analytical solution is only suitable for
class 622 crystals, not for class 6mm crystals that are usually met. In the above studies, the
variation of material density is often assumed to be the same as that of Young’s modulus
([13–17]). The non-homogeneous material has gained much attention because of its good heat-
shielding character as well as other significant superiorities. While the study for dynamic
thermoelastic problems for a special non-homogeneous orthotropic elastic cylindrical shell has yet
not been reported.

The dynamic thermoelastic problems are usually solved using Laplace transform technique that
the difficulty of inverse transform will be encountered in certain cases. In this paper, a theoretical
solution of a non-homogeneous orthotropic cylindrical shell is developed for the axisymmetric
plane strain dynamic thermoelastic problem. Firstly, a new dependent variable is introduced to
rewrite the governing equation, the boundary conditions as well as the initial conditions.
Secondly, the thermal load is treated as the inhomogeneous item in the boundary conditions and a
special function is introduced to transform the inhomogeneous boundary conditions to the
homogeneous ones. Thirdly, by using the orthogonal expansion technique, the equation with
respect to the time variable is derived, of which the solution is easily obtained. The present method
can avoid integral transform and is fit for an arbitrary thick-walled cylindrical shell subjected to
general thermal loads. Several special cases are discussed and numerical examples are finally
presented.
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2. Mathematical formulations of the problem

In a cylindrical co-ordinate system ðr; y; zÞ; for the axially symmetric problem, we have uy ¼ 0;
ur ¼ urðr; z; tÞ and uz ¼ uzðr; z; tÞ: Furthermore, if only axisymmetric plane strain problem is
considered, we have uy ¼ uz ¼ 0 and ur ¼ urðr; tÞ: The strain–displacement relations are

grr ¼
@ur

@r
; gyy ¼

ur

r
; gzz ¼ gzr ¼ gry ¼ gyz ¼ 0; ð1Þ

where ui and gij are the displacement components and strain components, respectively. The stress–
strain relations are

srr ¼ c11grr þ c12gyy � b1Tðr; tÞ;

syy ¼ c12grr þ c22gyy � b2Tðr; tÞ;

szz ¼ c13grr þ c23gyy � b3Tðr; tÞ; ð2Þ

where sij; cij ;bi and Tðr; tÞ are the stress components, elastic constants, stress–temperature
constants and the reference temperature, respectively. The stress–temperature constants can be
expressed in terms of elastic constants cij and coefficients of linear thermal expansion ai as follows:

b1 ¼ c11ar þ c12ay þ c13az; b2 ¼ c12ar þ c22ay þ c23az;

b3 ¼ c13ar þ c23ay þ c33az: ð3Þ

The equation of motion is

@srr

@r
þ

srr � syy
r

¼ r
@2ur

@t2
; ð4Þ

where r is the mass density.
In this study, we assume the non-homogeneous property of the material is characterized by

cij ¼ ðr=bÞ2NAij ; r ¼ ðr=bÞ2Nr0; ð5Þ

where b; Aij ; r0 and N are known constants, while the coefficients of linear thermal expansion ai

are constant. Substituting the first equation in Eq. (5), Eqs. (1) and (3) into Eq. (2), we obtain

srr ¼ ðr=bÞ2N A11
@ur

@r
þ A12

ur

r
� B1Tðr; tÞ

� �
;

syy ¼ ðr=bÞ2N A12
@ur

@r
þ A22

ur

r
� B2Tðr; tÞ

� �
;

szz ¼ ðr=bÞ2N A13
@ur

@r
þ A23

ur

r
� B3Tðr; tÞ

� �
;

ð6Þ

where

B1 ¼ A11ar þ A12ay þ A13az; B2 ¼ A12ar þ A22ay þ A23az;

B3 ¼ A13ar þ A23ay þ A33a:z: ð7Þ
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Substituting the second equation in Eqs. (5) and (6) into Eq. (4), yields the following governing
equation:

@2ur

@r2
þ

2N þ 1

r

@ur

@r
�

m2
1

r2
ur ¼

1

c2L

@2ur

@t2
þ gðr; tÞ; ð8Þ

where

m2
1 ¼

A22 � 2NA12

A11
; cL ¼

ffiffiffiffiffiffiffiffi
A11

r0

s
;

gðr; tÞ ¼
ð2N þ 1ÞB1 � B2

A11

Tðr; tÞ
r

þ
B1

A11

@Tðr; tÞ
@r

: ð9Þ

The boundary conditions are

r ¼ a and b : A11
@ur

@r
þ 2A12

ur

r
� B1Tðr; tÞ ¼ 0; ð10Þ

where a and b are the inner and outer radii of the cylindrical shell, respectively. The initial
conditions at t ¼ 0 are

urðr; 0Þ ¼ u0ðrÞ; ’urðr; 0Þ ¼ v0ðrÞ; ð11Þ

where a dot over the letter denotes its partial derivative with respect to t; and u0ðrÞ and v0ðrÞ are
known functions.

3. Solving method and the theoretical solution

Firstly, a new dependent variable wðr; tÞ is introduced as

urðr; tÞ ¼ r�Nwðr; tÞ: ð12Þ

Then Eqs. (8), (10) and (11) become

@2wðr; tÞ
@r2

þ
1

r

@wðr; tÞ
@r

�
m2

r2
wðr; tÞ ¼

1

c2L

@2wðr; tÞ
@t2

þ g1ðr; tÞ; ð13Þ

r ¼ a :
@wðr; tÞ

@r
þ h

wðr; tÞ
r

¼ paðtÞ; ð14aÞ

r ¼ b :
@wðr; tÞ

@r
þ h

wðr; tÞ
r

¼ pbðtÞ; ð14bÞ

wðr; 0Þ ¼ u1ðrÞ; ’wðr; 0Þ ¼ v1ðrÞ; ð15Þ

where

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
1 þ N2

q
; g1ðr; tÞ ¼ rNgðr; tÞ; h ¼ A12=A11 � N;

paðtÞ ¼ aNB1Tða; tÞ=A11; pbðtÞ ¼ bNB1Tðb; tÞ=A11;

u1ðrÞ ¼ rNu0ðrÞ; v1ðrÞ ¼ rNv0ðrÞ: ð16Þ
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Secondly, we transform the inhomogeneous boundary conditions into the homogeneous ones
by assuming

wðr; tÞ ¼ w1ðr; tÞ þ w2ðr; tÞ; ð17Þ

where w2ðr; tÞ satisfies the inhomogeneous boundary conditions, and can be taken as

w2ðr; tÞ ¼ d1ðr � aÞmpbðtÞ þ d2ðr � bÞmpaðtÞ; ð18Þ

where

d1 ¼
b1�m

mð1� sÞm�1 þ hð1� sÞm
; d2 ¼

b1�m

mðs � 1Þm�1 þ hðs � 1Þm=s
; ð19Þ

in which mX2 is an arbitrary integer that should satisfy

½mð1� sÞm�1 þ hð1� sÞm�½mðs � 1Þm�1 þ hðs � 1Þm=s�a0: ð20Þ

Substituting Eq. (17) into Eqs. (13)–(15) gives

@2w1ðr; tÞ
@r2

þ
1

r

@w1ðr; tÞ
@r

�
m2

r2
w1ðr; tÞ ¼

1

c2L

@2w1ðr; tÞ
@t2

þ g2ðr; tÞ; ð21Þ

r ¼ a and b :
@w1ðr; tÞ

@r
þ h

w1ðr; tÞ
r

¼ 0; ð22Þ

w1ðr; 0Þ ¼ u2ðrÞ; ’w1ðr; 0Þ ¼ v2ðrÞ; ð23Þ

where

g2ðr; tÞ ¼ g1ðr; tÞ þ
1

c2L

@2w2ðr; tÞ
@t2

þ
m2

r2
w2ðr; tÞ �

1

r

@w2ðr; tÞ
@r

�
@2w2ðr; tÞ

@r2
;

u2ðrÞ ¼ u1ðrÞ � w2ðr; 0Þ; v2ðrÞ ¼ v1ðrÞ � ’w2ðr; 0Þ: ð24Þ

By using the trial-and-error method, the solution of Eq. (21) can be assumed in the following
form:

w1ðr; tÞ ¼
X

i

RiðrÞFiðtÞ; ð25Þ

where FiðtÞ are unknown functions about t; and RiðrÞ are given by

RiðrÞ ¼ JmðkirÞYðm; ki; aÞ �YmðkirÞJðm; ki; aÞ; ð26Þ

in which JmðkirÞ and YmðkirÞ are Bessel functions of the first and second kinds, respectively, and ki;
arranged in an ascending order, are a series of positive roots of the following eigenequation:

Jðm; ki; aÞYðm; ki; bÞ � Jðm; ki; bÞYðm; ki; aÞ ¼ 0; ð27Þ

where

Jðm; ki; rÞ ¼
dJmðkirÞ

dr
þ h

JmðkirÞ
r

; Yðm; ki; rÞ ¼
dYmðkirÞ

dr
þ h

YmðkirÞ
r

: ð28Þ

It can be shown that w1ðr; tÞ given in Eq. (25) satisfies the homogeneous boundary conditions in
Eq. (22).
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Substituting Eq. (25) into Eq. (21), gives

�c2L

X
i

k2
i FiðtÞRiðrÞ ¼

X
i

RiðrÞ
d2FiðtÞ
dt2

þ c2Lg2ðr; tÞ: ð29Þ

By virtue of the orthogonal property of Bessel functions, it is easy to verify the following equation:Z b

a

rRiðrÞRjðrÞ dr ¼ Nidij; ð30Þ

where dij is the Kronecker delta, and

Ni ¼ b2 dRiðbÞ
dr

� �2

�a2 dRiðaÞ
dr

� �2
(

þk2
i ½b

2R2
i ðbÞ � a2R2

i ðaÞ� � m2½R2
i ðbÞ � R2

i ðaÞ�

),
2k2

i : ð31Þ

In the above equation, we denote dRiðaÞ=dr ¼ dRiðrÞ=dr
��
r¼a

and dRiðbÞ=dr ¼ dRiðrÞ=dr
��
r¼b

:
Utilizing Eq. (30), we can derive the following equation from Eq. (29)

d2FiðtÞ
dt2

þ o2
i FiðtÞ ¼ qiðtÞ; ð32Þ

where

oi ¼ kicL; qiðtÞ ¼ �
c2L
Ni

Z b

a

rg2ðr; tÞRiðrÞ dr: ð33Þ

The solution of Eq. (32) is

FiðtÞ ¼ G1i cosoit þ
G2i

oi

sinoit þ
1

oi

Z t

0

qiðtÞsin oiðt � tÞ dt; ð34Þ

where

G1i ¼
1

Ni

Z b

a

ru2ðrÞRiðrÞ dr;G2i ¼
1

Ni

Z b

a

rv2ðrÞRiðrÞ dr: ð35Þ

Finally, the displacement solution can be obtained as follows:

urðr; tÞ ¼ r�N ½w1ðr; tÞ þ w2ðr; tÞ�: ð36Þ

4. Some particular cases

4.1. Isotropic material

If

A11 ¼ A22 ¼ A33 ¼ Eð1� uÞ=k; A12 ¼ A13 ¼ A23 ¼ Eu=k;

k ¼ ð1þ uÞð1� 2uÞ; ar ¼ ay ¼ az ¼ a; ð37Þ
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where E and u are Young’s modulus and the Poisson ratio, respectively, the solution obtained
above degenerates to that of a non-homogeneous isotropic cylindrical shell for the dynamic
thermoelastic problem.

4.2. Homogeneous material

If N ¼ 0; the solution degenerates to that of a homogeneous orthotropic cylindrical shell for the
dynamic thermoelastic problem. Further, if the material constants satisfy Eq. (37), the solution
becomes that of a homogeneous isotropic cylindrical shell for the dynamic thermoelastic problem.

4.3. Fixed boundary conditions

For a cylindrical shell fixed at the internal surface, the boundary condition at r ¼ a becomes

urða; tÞ ¼ 0: ð10aÞ

Consequently, instead of Eqs. (14a) and (22), we have

wða; tÞ ¼ 0; ð14a0Þ

w1ða; tÞ ¼ 0: ð22aÞ

Then, we can just set paðtÞ ¼ 0; Jðm; ki; aÞ ¼ JmðkiaÞ and Yðm; ki; aÞ ¼ YmðkiaÞ in relevant
formulations to obtain the solution of the dynamic thermoelastic problem for a non-
homogeneous orthotropic cylindrical shell with fixed internal surface.

4.4. Homogeneous isotropic solid cylinder

For a homogeneous isotropic solid cylinder, we have N ¼ 0; a ¼ 0; and the material constants
satisfy Eq. (37). We can just set paðtÞ ¼ 0; Jðm; ki; aÞ ¼ 0 and Yðm; ki; aÞ ¼ 1 in relevant
formulations to obtain the solution of the dynamic thermoelastic problem for a homogeneous
isotropic solid cylinder.

5. Numerical results and discussions

Both isotropic and orthotropic materials are considered. For the orthotropic cylindrical shell,
we take a ¼ 50 mm; b ¼ 100mm; A11 ¼ 17:075GPa; A12 ¼ 6:757GPa; A13 ¼ 7:289GPa; A22 ¼
59:645GPa; A23 ¼ 6:752 GPa; A33 ¼ 17:074 GPa; ar ¼ 4:0	 10�5=1C; ay ¼ 1:0	 10�5=1C; az ¼
4:0	 10�5=1C; and for the isotropic cylindrical shell (solid cylinder) with the same size (a ¼ 0 for
cylinder), we take E ¼ 55:9 GPa; u ¼ 0:277; a ¼ 1:0	 10�5=1C: In the result, the time and co-
ordinate are normalized as follows:

x ¼
r � a

b � a
; t
 ¼

cL

b � a
t: ð38Þ

In the following calculation, we take T0 ¼ 2001C; u0ðrÞ ¼ 0; v0ðrÞ ¼ 0: Here T0 is a reference
temperature. Also, HðtÞ denotes the Heaviside step function.

Example 1. Thermally shocked homogeneous isotropic cylindrical shell: Tðr; tÞ ¼ T0HðtÞ:

H.J. Ding et al. / Journal of Sound and Vibration 263 (2003) 815–829 821



Figs. 1 and 2 give the dynamic stress responses of the homogeneous isotropic cylindrical shell
due to a uniform temperature. The same problem has been solved by Cho et al. [9] in a different
way, and Fig. 3 is the copy of Fig. 4b for isotropic case in Ref. [9]. For the sake of comparing with
those obtained by Cho et al. [9], the stresses are not given in a dimensionless form in the two
figures. It is found that Fig. 1 agree well with Fig. 3 (the amplitude has a little difference). Thus,
the validation of the method developed in this paper is verified.

From Fig. 1, We find that the peaks appear periodically. Such phenomenon has been
explained in Ref. [9]. Since the thermal loading is applied to the entire hollow cylinder
instantaneously, the stress disturbance is simultaneously generated all over the wall. In the vicinity
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of the boundary, the radial stress feels the strong discontinuity (wave front) right after the loading.
Each wave front moves inward and the waves meet at the center location and cause a stress
reversion and sudden jump in magnitude. After that, the wave fronts proceed to the boundaries
continuously. When the wave fronts reach the boundaries, they are reflected into to opposite
direction [9].

Example 2. Thermally shocked homogeneous isotropic solid cylinder: urð0; tÞ ¼ 0; Tðr; tÞ ¼
T0HðtÞ:

Figs. 4 and 5 depict the non-dimensional dynamic stress responses at x ¼ 0:0 and 0.5 in the
homogeneous isotropic solid cylinder due to a uniform temperature rise. The dimensionless
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N
on

di
m

en
si

on
al

 r
ad

ia
l s

tr
es

s 
σ  

r

0.00 2.00 4.00 6.00 8.00 10.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

ξ = 0.0

ξ = 5.0

Nondimensional time t *

Fig. 4. History of non-dimensional dynamic stress %sr:

H.J. Ding et al. / Journal of Sound and Vibration 263 (2003) 815–829 823



stresses are defined as

%si ¼
sii

s0
ði ¼ r; y; zÞ; s0 ¼ aET0: ð39Þ

The dynamic stress concentration phenomenon occurs at the center. The first dynamic tensile
stress peak values of %sr and %sy at x ¼ 0:0 are 4.1 and 5.9 times, respectively, as large as those at
x ¼ 0:5: The agreement of Figs. 4 and 5 somewhat proofs that the result are correct.

Example 3. Thermally shocked homogeneous orthotropic cylindrical shell: Tðr; tÞ ¼ T0HðtÞ:
Figs. 6 and 7 give the dynamic stress responses of the homogeneous orthotropic cylindrical shell

due to a uniform temperature rise. The same problem has also been solved by Cho [9] in a
different way, and Figs. 8 and 9 are the copies of Fig. 4b for orthotropic case and Fig. 5 in Ref. [9],
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respectively. It is found that our results agree well with those obtained in Ref. [9] (the amplitude
has a little difference), see Figs. 8 and 9 in this paper. Thus, the validation of the method
developed in this paper is further verified.

Example 4. Thermally shocked non-homogeneous orthotropic cylindrical shell: Tðr; tÞ ¼ T0HðtÞ:
In order to compare the results with that of a homogeneous orthotropic cylindrical shell, the

dynamic stress are not normalized in this example. Fig. 10 shows the radial stress responses at
x ¼ 0:5 in the thermally shocked non-homogeneous orthotropic cylindrical shell for different
values of N: We can see that at t
 ¼ 0:5; 1.5, 2.5y, the radial dynamic thermal stress possesses a
strong discontinuity and the peak values of the radial dynamic stress decrease slightly when N

increases. Figs. 11–14 give the dynamic stress responses at the internal and external surfaces in the
thermally shocked non-homogeneous orthotropic cylindrical shell for different values of N: We
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can see that the peak values of dynamic stresses at the internal surface decrease with the increase
of N; while the peak values of dynamic stresses at the external surface vary slightly with N except
at some particular moments, such as t
 ¼ 6:5; 9.5, etc. The results also show that the axial stress is
not significant in comparison with the radial and hoop stresses.

For N ¼ 0:5; the distributions of the radial and hoop stresses in a thermally shocked non-
homogeneous orthotropic cylindrical shell at different times are presented in Figs. 15 and 16.
From the curves, we can clearly see the propagation phenomenon of the thermal stress wave in the
uniformly heated cylindrical shell at the initial phase. The thermal stress waves are induced when a
cylindrical shell subjected to a uniform temperature rise and propagate inward and outward,
respectively. When they arrive at the internal surface and the external surface, they are reflected in
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Fig. 15. Distribution of dynamic stress srr at different time (N ¼ 0:5).

0.00 0.20 0.40 0.60 0.80 1.00

-400.00

-200.00

0.00

200.00

H
oo

p 
st

re
ss

 σ
 θ

θ 
(M

Pa
) 

 

Nondimensional coordinate ξ

t∗ = 1.0

t∗ = 0.01t∗ = 0.5

t∗ = 0.2
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the opposite direction. It thus causes the dynamic stresses peaking periodically in a thermally
shocked cylindrical shell.
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